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8093 Zürich, Switzerland
bCentre for Research in String Theory, Department of Physics, Queen Mary, University of London,

Mile End Road, London, E1 4NS, United Kingdom
cInstitute for Particle Physics Phenomenology, Department of Physics, Durham University,

Durham, DH1 3LE, United Kingdom

E-mail: babis@phys.ethz.ch, valya.khoze@durham.ac.uk,

a.brandhuber@qmul.ac.uk, p.j.heslop@qmul.ac.uk,

w.j.spence@qmul.ac.uk, g.travaglini@qmul.ac.uk
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of planar six-point MHV amplitudes and hexagon Wilson loops which has been observed at

two loops. At n = 6 we confirm that the ABDK/BDS ansatz must be corrected by adding a

remainder function, which depends only on conformally invariant ratios of kinematic vari-

ables. We numerically compute remainder functions for n = 7, 8 and verify dual conformal

invariance. Furthermore, we study simple and multiple collinear limits of the Wilson loop

remainder functions and demonstrate that they have precisely the form required by the

collinear factorisation of the corresponding two-loop n-point amplitudes. The number of

distinct diagram topologies contributing to the n-gon Wilson loops does not increase with

n, and there is a fixed number of “master integrals”, which we have computed. Thus we

have essentially computed general polygon Wilson loops, and if the correspondence with

amplitudes continues to hold, all planar n-point two-loop MHV amplitudes in the N = 4

theory.
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1 Introduction

A surprising feature encountered in the study of supersymmetric gauge theories is the

existence of an intriguing iterative structure in the higher-loop expansion of the Maximally

Helicity Violating (MHV) scattering amplitudes in planar N = 4 super Yang-Mills (SYM)

theory. This iterative structure was first discovered by Bern, Dixon, Kosower and one of

the present authors (ABDK) studying collinear limits of maximally supersymmetric gauge

theory amplitudes, and in the planar four-point MHV amplitude at two loops [1]. In

the same paper, it was also conjectured that the same iterative structure should hold for

two-loop MHV amplitudes with an arbitrary number of external legs.

In a subsequent important development, Bern, Dixon and Smirnov (BDS) proposed

an all-loop resummed formula for the n-point MHV amplitude, which they were able to

confirm in an impressive three-loop calculation of the four-point amplitude [2]. According

to this conjecture, multi-loop amplitudes can be re-expressed in terms of the one-loop

amplitude and four kinematic-independent functions of the ’t Hooft coupling. One of these

functions is the cusp anomalous dimension [3–5], for which an all-order expression has been

proposed in [6].

The ABDK/BDS conjecture was further investigated in several papers. In particular,

it was confirmed in a two-loop calculation for the five-point amplitude in [7] — a result

which is particularly non-trivial since it implies a cancellation of certain parity-odd terms

in the two-loop term of the logarithm of the amplitude.1 It was also pointed out in [9] that

the amplitudes of the β-deformed N = 4 theory with real β are identical to those of the

undeformed theory (modulo an irrelevant, overall phase), and as such they will satisfy the

ABDK/BDS iterative structure if the corresponding undeformed amplitudes do. Explicit

expressions of the four-point amplitudes at four and five loops were also derived in [10]

and [11], respectively, and, for the four-dimensional cut-constructible part of the five-point

amplitude at three loops in [12]; these expressions will allow for further tests of the BDS

ansatz at four and five loops once the relevant integral functions have been evaluated to

the necessary degree of accuracy in ǫ.

One of the key aspects of the ABDK/BDS conjecture is the appearance of the expo-

nentiation of the one-loop result in the complete perturbative answer. In a remarkable

paper [13], Alday and Maldacena succeeded in using the AdS/CFT correspondence to pro-

vide a string theory formalism to address scattering amplitudes at strong coupling. In

particular, their calculation of the four-point amplitude reproduced the strong-coupling

limit of the BDS ansatz. It also provided a string theory explanation for why planar scat-

tering amplitudes at strong coupling exponentiate, through a semiclassical calculation. It

was argued in [14] that the same exponentiation of [13] should hold not only for MHV

amplitudes but also for non-MHV amplitudes, since the helicity dependence of the ampli-

tudes in the prefactor is unlikely to modify the semiclassical exponent in the path integral.

However, for the non-MHV case the exponentiation can only occur at strong coupling, and

is not apparent in perturbation theory.

1The iteration for the parity-even terms had been proved earlier in [8].
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The result of [13] suggested that the vacuum expectation value of a polygonal n-edged

Wilson loop, evaluated this time at weak coupling, could be related to the perturbative

n-point MHV amplitude in N = 4 SYM [15, 16]. This was confirmed in a one-loop cal-

culation for n = 4 in [15] and subsequently for arbitrary n in [16]. Drummond, Henn,

Korchemsky and Sokatchev (DHKS) were later able to confirm this conjecture in a re-

markable analytic calculation of the two-loop four-edged Wilson loop [17], followed by a

semi-analytical calculation of the five-edged Wilson loop [18].

It was later argued [19] that the BDS ansatz may be incomplete, specifically for n-point

amplitudes with n ≥ 6 [20]. The authors of [21] have carried out an explicit calculation

which shows that the BDS ansatz indeed needs to be modified in order to reproduce the

two-loop term of the logarithm of the six-point amplitude. In a parallel development, the

corresponding six-point lightlike Wilson loop was computed at two loops in [22, 23], and

compared in [21, 23] to the parity-even part of the amplitude evaluated in [21].2 The

result of this analysis is that the MHV amplitude, stripped of the tree-level prefactor, and

the Wilson loop are in perfect agreement (up to an additive constant) for the two-loop,

six-point case,3 but there is an additional contribution compared to what the BDS ansatz

predicts. This extra term, which we will refer to as the remainder function, will be one of

the main characters of our paper.

The possibility of having a nonvanishing remainder function was neatly explained

in [18] in terms of the anomalous conformal symmetry of the lightlike Wilson loop. In

that paper the associated anomalous conformal Ward identities were derived, and it was

shown that the BDS expression provided a particular solution to these Ward identities. At

the same time, the anomalous Ward identities cannot uniquely determine terms that are

invariant under the conformal symmetry, and this leaves room for a conformally invariant

remainder function [18]. For n ≤ 5, the lightlike constraints on the particle momenta re-

strict such conformally invariant contributions to just (kinematic-independent) constants.

However, starting from n = 6 edges one can build functions of the conformally invariant ra-

tios which are left undetermined by the Ward identities, and need no longer vanish. DHKS

made the prediction therefore that, if the duality with Wilson loops holds, the remainder

function should depend on the kinematics only through cross-ratios.

The dual conformal symmetry of the Wilson loop was also instrumental in suggesting

that the S-matrix of the N = 4 theory should possess a dual superconformal symme-

try [25, 26], which is expected to be exact at tree level, and violated by an anomaly at

the loop level. Indeed, it was later proved in [27] using a supersymmetric version [27–29]

of the BCF recursion relation [30, 31] that the tree-level S-matrix of the planar N = 4

theory is covariant under the dual superconformal symmetry. A solution of the supersym-

metric recursion relation of [27–29] was also presented in [32]. We also mention that the

dual superconformal charges resurface as part of an infinite tower of charges coming from

integrability of the dual AdS sigma model [33, 34].

2The full six-point amplitude at two loops has been presented in [24].
3More accurately, there is a difference in the coefficients of the subleading 1/ǫ pole for the Wilson loop

and the amplitude. We will come back to this point in section 3.2.
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In this paper, we present the results of our study of the Wilson loop remainder function

for arbitrary n. One important observation is that the structure of infrared and other

integrable singularities of the diagrams which enter the Wilson loop calculation does not

change for n > 7. Therefore, with the same numerical routines we can evaluate Wilson

loops for arbitrary n. We should note that our calculations were performed for Euclidean

kinematics, but a generalisation to Minkowskian kinematics is possible.

There are several interesting properties of the remainder functions which we have

analysed. The first one is its conjectured dependence on the kinematics only through

cross-ratios. In our study we have collected ample numerical evidence that confirms this

expectation for n = 6, 7 and 8 points. The second aspect is the study of simple and multiple

collinear limits of this function. Specifically, using universal factorisation theorems [35–

38] for scattering amplitudes one can predict [21] the behaviour of the n-point amplitude

remainder functions under simple collinear limits, namely Rn → Rn−1. In this paper we

will show that the appropriately defined Wilson loop remainder function RWL
n has exactly

the same collinear behaviour, namely

RWL
n → RWL

n−1 . (1.1)

Notice that no additional constant term appears on the right hand side of (1.1). We have

checked this numerically for n = 6, 7 and 8 sided polygon Wilson loops. Finally, one of

the most important goals for the future is to find analytic expressions for the remainder

functions. As a first step we have initiated a detailed map of these functions, in particular

for n = 6, for a wide range of values of the cross-ratios. We were able to make intrigu-

ing observations for special values of the cross-ratios and lower dimensional slices of the

kinematic parameter spaces. On general grounds, we expect the remainder functions to be

transcendentality four functions of the conformal cross-ratios. However, even if we restrict

the remainder functions to a one-dimensional slice of the parameter space, the space of

transcendentality four functions is rather large and, hence, numerical methods are not suf-

ficient to determine the remainder function. Clearly, new theoretical ideas, possibly from

the AdS/CFT correspondence or integrability, are needed in order to make progress in this

direction.

The rest of the paper is organised as follows. In section 2 we review salient features of

planar gluon scattering amplitudes in N = 4 SYM, their recursive properties at loop level,

and the BDS all-loop ansatz. Furthermore, we introduce the amplitude remainder function,

which is the difference between the full amplitude and the BDS ansatz, and is expected

to depend only on the dual conformal cross-ratios of kinematic invariants. In section 3

we set up the corresponding polygon Wilson loop calculations at two loops, and give a

natural definition of the Wilson loop remainder function, which behaves under collinear

limits in the same way as the amplitude remainder function. In section 4 we present details

about the diagrams and the corresponding Feynman integrals entering the calculation of

arbitrary, lightlike, n-gon Wilson loops. In section 5 we discuss the numerical evaluation of

these Feynman integrals. In section 6 we present a detailed, numerical analysis of the six-

point remainder function including tests of dual conformal invariance, the explicit values

of the remainder function at specific values of the cross-ratios, and various illustrative

– 4 –
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plots. In section 7 we start off with a discussion of the seven-point remainder function,

and give explicit numerical results to illustrate our checks of dual conformal invariance and

invariance under cyclic permutations and reflections of the external momenta. We then

move on to discuss simple and multiple collinear limits of two-loop amplitudes and Wilson

loops. Specifically, we present evidence that in the simple collinear limits the seven-point

remainder function becomes equal to the six-point remainder function. Finally, in section

8 we present a similar analysis for the eight-point Wilson loop and briefly discuss the

generalisation to arbitrary n.

2 Planar amplitudes in N = 4 super Yang-Mills and the ABDK/BDS

ansatz

The infinite sequence of n-point planar MHV amplitudes in N = 4 SYM has a remark-

ably simple form. At any loop order L, the amplitude can be expressed as the tree-level

amplitude, times a scalar, helicity-blind function M(L)
n :

A(L)
n = Atree

n M(L)
n . (2.1)

At one loop, the function M(1)
n is simply a sum of two-mass easy box functions F 2m e [39],

with coefficient equal to one:

M(1)
n =

∑

p,q

F 2m e(p, q, P,Q) . (2.2)

In [1], ABDK discovered an intriguing iterative structure in the two-loop expansion of the

MHV amplitudes at four points. This relation can be written as

M(2)
4 (ǫ) − 1

2

(
M(1)

4 (ǫ)
)2

= f (2)(ǫ)M(1)
4 (2ǫ) + C(2) + O(ǫ) , (2.3)

where

f (2)(ǫ) = −ζ2 − ζ3ǫ − ζ4ǫ
2 , (2.4)

and

C(2) = −1

2
ζ2
2 . (2.5)

In [1], it was conjectured that (2.3)–(2.5) should hold for two-loop amplitudes with an

arbitrary number of legs — a conjecture which was consistent with an explicit evaluation

of the universal two-loop splitting amplitude.

Building upon the iterative relation of [1], and the known universal infrared behaviour

of gauge theory amplitudes [40–49], BDS proposed a resummed, exponentiated expression

for the scalar function Mn. In the same paper, this conjecture was checked in a three-loop

calculation in the four-point case. Specifically, the BDS conjecture is expressed as [2]

Mn := 1 +
∞∑

L=1

aLM(L)
n (ǫ) = exp

[
∞∑

L=1

aL
(
f (L)(ǫ)M(1)

n (Lǫ) + C(L) + E(L)
n (ǫ)

)]
, (2.6)

– 5 –
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where a is the loop-counting parameter. In the conventions of [2], this is defined as a =

[g2N/(8π2)](4πe−γ)ǫ . Here f (L)(ǫ) is a set of functions,

f (L)(ǫ) := f
(L)
0 + f

(L)
1 ǫ + f

(L)
2 ǫ2 , (2.7)

one at each loop order, which appear in the exponentiated all-loop expression for the

infrared divergences in generic amplitudes in dimensional regularisation [47] (and generalise

the function f (2) in (2.3)). In particular, f
(L)
0 = γ

(L)
K /4, where γK is the cusp anomalous

dimension,

γK(a) =
∞∑

L=1

aL γ
(L)
K , γ

(1)
K = 4 , γ

(2)
K = −4 ζ2 , (2.8)

related to the anomalous dimension of twist-two operators at large spin [44]. The ap-

pearance of the cusp anomalous dimension characterises the relation between the infrared

divergences of scattering amplitudes and ultraviolet divergences of Wilson loops with cusps

which was originally discussed in QCD in [5, 43].

The O(ǫ) term in (2.7) is related to the so-called collinear anomalous dimension G,

f
(L)
1 = (L/2)G(L),

G(a) =

∞∑

L=2

aL G(L) , G(2) = −ζ3 , (2.9)

and f
(2)
2 = −ζ4. In particular, f

(2)
2 can already be found from simple collinear limits of the

amplitudes. For future reference we also define

C(a) =

∞∑

L=2

aL C(L) . (2.10)

Importantly, the constants C(L), f
(L)
0 , f

(L)
1 and f

(L)
2 on the right hand side of (2.6) do

not depend either on kinematics or on the number of particles n. On the other hand, the

non-iterating contributions E
(L)
n depend explicitly on n, but vanish as ǫ → 0.

BDS also suggested a resummed expression for the appropriately defined finite part of

the n-point MHV amplitude,

Fn = eFBDS
n , (2.11)

where

FBDS
n (a) =

1

4
γK(a) F (1)

n (0) + C(a) . (2.12)

The quantities γK(a) and C(a), are given in (2.8) and (2.10); the entire dependence on

kinematics of the BDS ansatz enters through the finite part of the one-loop box function,

F
(1)
n (0). Explicitly, one has [2]

M(1)
n (ǫ) = − 1

2ǫ2

n∑

i=1

(
− t

[2]
i

µ2

)−ǫ

+ F (1)
n (ǫ) , (2.13)

F (1)
n (0) =

1

2

n∑

i=1

gn,i , (2.14)

– 6 –
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where

gn,i = −
[n/2]−1∑

r=2

ln

(
−t

[r]
i

−t
[r+1]
i

)
ln

(
−t

[r]
i+1

−t
[r+1]
i

)
+ Dn,i + Ln,i +

3

2
ζ2 , (2.15)

and t
[r]
i := (pi + · · · + pi+r−1)

2 are the kinematical invariants. The explicit forms of the

functions Dn,i and Ln,i depend on whether n is odd or even. For n = 2m one has

D2m,i = −
m−2∑

r=2

Li2

(
1 − t

[r]
i t

[r+2]
i−1

t
[r+1]
i t

[r+1]
i−1

)
− 1

2
Li2

(
1 − t

[m−1]
i t

[m+1]
i−1

t
[m]
i t

[m]
i−1

)
, (2.16)

L2m,i = −1

4
ln

(
−t

[m]
i

−t
[m]
i+m+1

)
ln

(
−t

[m]
i+1

−t
[m]
i+m

)
,

whilst, when n = 2m + 1,

D2m+1,i = −
m−1∑

r=2

Li2

(
1 − t

[r]
i t

[r+2]
i−1

t
[r+1]
i t

[r+1]
i−1

)
, (2.17)

L2m+1,i = −1

2
ln

(
−t

[m]
i

−t
[m]
i+m+1

)
ln

(
−t

[m]
i+1

−t
[m]
i+m

)
.

The case n = 4 is special; in this case the finite remainder is given by

F
(1)
4 (0) =

1

2
ln2
(s

t

)
+ 4ζ2 , (2.18)

which is the finite part of the zero-mass box function plus a constant shift.

2.1 The amplitude remainder function and n-point cross-ratios

Beyond five points, and starting from two loops, the ABDK/BDS ansatz (2.3) needs to be

modified by the addition of a remainder function Rn [21, 23],

M(2)
n (ǫ) − 1

2

(
M(1)

n (ǫ)
)2

= f (2)(ǫ)M(1)
n (2ǫ) + C(2) + Rn + O(ǫ) . (2.19)

We now move on to characterise it.

To begin with, we recall one of the important properties of the ansatz, namely that

it already incorporates the correct simple collinear limits of the amplitude for all n [1, 2].

We will review this in section 7.2, but we would like to anticipate here one important

consequence of this, namely the fact that the remainder function must have trivial collinear

limits. With the definition given above of the remainder function, one expects that under

a simple collinear limit [21]

Rn → Rn−1 , (2.20)

where no constant term can appear on the right hand side of (2.20).

An important advance was made in [18], where it was realised that the BDS ansatz

is a solution to the anomalous Ward identity for the Wilson loop associated to the dual

– 7 –
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conformal symmetry. As is by now common, one introduces dual (or region) momenta

x1, . . . , xn [13, 50] and defines the particles’ momenta as

pi := xi − xi+1 , (2.21)

(with the identification x1 = xn+1), which satisfy n on-shell relations (xi − xi+1)
2 = 0,

i = 1, . . . , n. The dual conformal group then acts on the dual momenta [17, 18]. It

is important to notice that acting with conformal transformations on the dual momenta

x does not endanger momentum conservation, which is automatically satisfied once the

momenta are written in the form (2.21).

Obviously, adding to the ABDK/BDS ansatz any arbitrary function of the conformally

invariant cross-ratios
x2

ijx
2
kl

x2
ikx

2
jl

, (2.22)

preserves conformal invariance and hence would give another solution to the same conformal

Ward identity. With this in mind, it was argued in [18] that the remainder function, if

non-vanishing, should depend on the kinematics of the scattering only through cross-ratios.

It is therefore important to examine how many independent cross-ratios one can build at

n points.

Starting from a set of n arbitrary points, one can define n(n − 3)/2 cross-ratios. This

number is reduced to n(n − 5)/2 if one imposes the n on-shell conditions for lightlike

momenta — notice that this is the same as the number of two-mass easy box functions

which could potentially appear in a colour-ordered Yang-Mills n-point amplitude. If one

considers four-dimensional external momenta we have additional constraints that the Gram

determinant of any five of them should vanish. With the Gram determinant constraints,

the number of possible on-shell cross-ratios is reduced to [18] 3n−15 for n > 5. Incidentally,

we note that the number of on-shell cross-ratios one can construct from n points in a D-

dimensional space with D ≥ n − 1 is also equal to n(n − 5)/2 [18]. Discarding the Gram

determinant constraints is therefore equivalent to considering the external momenta as

defined in a D-dimensional space with D ≥ n − 1.

Taking this apparent coincidence between the number of cross-ratios and of two-mass

easy boxes more seriously, we define the independent cross-ratios we will use to parametrise

any n-point remainder function as

uij :=
x2

ij+1x
2
i+1j

x2
ijx

2
i+1j+1

. (2.23)

In [16] it was shown explicitly how a finite one-loop Wilson loop diagram, where a gluon

propagator connects the momenta pi = xi − xi+1 and pj = xj − xj+1, reproduces the finite

part of the two-mass easy box function with kinematic invariants s = x2
ij , t = x2

i+1j+1,

P 2 = x2
ij+1, Q2 = x2

i+1j . The choice of kinematic invariants appearing in (2.23) precisely

matches those appearing in the corresponding box, and uij is of the form P 2Q2/(st) (see

figure 1).4

4Note also that a basis of off-shell cross-ratios can be given similarly, simply by allowing also the one-mass

box functions as well as the two-mass easy box functions.

– 8 –
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j+1 jj

i i

j

u i j

Figure 1. On the left we represent the one-loop Wilson loop diagram which gives the finite part of

the two-mass easy box function with massless momenta pi, pj [16]. On the right we represent the

corresponding cross-ratio uij , the red dashed lines depicting the factors x2
ij , x2

i+1j+1 , x2
i+1j , x2

ij+1

in the definition of uij in (2.23).

Two comments are in order. Firstly, we observe that the ratios in (2.23) are the same

as those entering the functions D and L defined in (2.16), (2.17), which appear in the

BDS ansatz (2.12). Secondly, we mention that a generic cross-ratio, i.e. one of the form

x2
ijx

2
lm/(x2

ilx
2
jm) for generic i, j, k, l , can be written as a product of cross-ratios of the

form (2.23) for arbitrary n. If we assume i < l and j < m this is simply given by

x2
imx2

jl

x2
ijx

2
lm

=
l−1∏

r=i

m−1∏

s=j

urs . (2.24)

The two different countings of cross-ratios mentioned above — with and without Gram

determinant conditions taken into account — predict that no cross-ratios can be written

for n = 4, 5, whereas at six points they allow for three independent harmonic ratios. These

could be chosen to be

u36 =
x2

31x
2
46

x2
36x

2
41

:= u1 , u14 =
x2

15x
2
24

x2
14x

2
25

:= u2 , u25 =
x2

26x
2
35

x2
25x

2
36

:= u3 . (2.25)

In [21, 23] it was verified for several kinematical configurations that the six-point remainder

function indeed depends on the kinematics only through the three cross-ratios in (2.25),

as predicted by dual conformal invariance. Furthermore, the six-point remainder function

is a symmetric function of the three cross-ratios (2.25) [22]. It can easily be shown that

any permutations of the three arguments of the remainder function corresponds to a cyclic

relabeling of the dual momenta plus possibly a reversal of their ordering, which clearly

leaves the Wilson loop unchanged. This property was checked numerically in [21, 23].

Interestingly, in [23] it was also shown numerically in a few examples that two kine-

matical configurations which have the same cross-ratios, but differ in that one respects the

Gram determinant constraint and one violates it, give rise to the same numerical values for
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the remainder function. In this paper we perform explicit calculations of lightlike Wilson

loops at six, seven and eight points. Starting from seven points, we find that there is a dif-

ferent number of cross-ratios depending on whether one implements the Gram determinant

constraint or not.

In practice, in the following we will discard the Gram constraint altogether, and work

with unconstrained kinematics. This turns out to be a particularly efficient way to generate

kinematical points — including cases where n is odd. At seven points, we will therefore

consider seven (rather than six) cross-ratios of the form (2.23). At eight points, we will

consider twelve cross-ratios (rather than nine). In all cases, we have performed extensive

numerical checks proving that the remainder function only depends on kinematics through

the expected cross-ratios.

3 Wilson loops and scattering amplitudes

The Wilson loop we consider in this paper is purely bosonic, and its expression is given by

W [Cn] := TrP exp

[
ig

∮

Cn

dτ ẋµ(τ)Aµ(x(τ))

]
. (3.1)

The particular closed contour Cn we consider is the lightlike n-edged polygonal contour

introduced in [13]. It is obtained by attaching the momenta of the scattered particles

p1, . . . , pn one after the other, following the order of the colour generators in the colour-

ordered scattering amplitude. The resulting contour is closed as
∑n

i=1 pi = 0, and the

positions of the vertices are given by the dual momenta coordinates, introduced earlier

in (2.21).

Calculations of (3.1) at one loop were performed in [15] and [16], where agreement was

found with the expression of the scalar function in (2.2) appearing in the corresponding

one-loop MHV amplitude. In the following we will discuss the basic ingredients needed to

perform a two-loop perturbative calculation of the Wilson loop.

3.1 Perturbation theory setup

The calculation of the Wilson loop at higher loops is simplified if one makes use of the

non-abelian exponentiation theorem [51, 52]. This theorem allows one to write the result

of the vacuum expectation value of the Wilson loop as an exponential, and gives a practical

rule to calculate the exponent. We represent the Wilson loop as

〈W [Cn]〉 := 1 +
∞∑

l=1

alW (l)
n := exp

∞∑

l=1

alw(l)
n , (3.2)

and, in this paper, our main focus is on the evaluation of the two-loop term w(2) in the

exponent. In terms of the Wilson loop coefficients W
(l)
n this is obtained as5

w(2)
n = W (2)

n − 1

2
(W (1)

n )2 . (3.3)

5Our Wilson loop conventions are summarised and compared to those of [25] in appendix A.
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The non-abelian exponentiation theorem has been used widely in several Wilson loop cal-

culations, see for example [53, 54], and more recently [17, 18, 23]. To briefly illustrate its

application, we first consider the calculation of a Wilson loop vacuum expectation value in

an abelian theory. In this case, it is not difficult to see that the perturbative series reor-

ganises itself into the exponential of the one-loop correction, i.e. the corresponding abelian

result is given by a formula like (3.2) with w
(l)
QED = 0, for any l > 1. In the non-abelian case,

parts of the result of the diagrams contribute to the exponentiation of the one-loop result,

but there are additional contributions which correct order by order in perturbation theory

the one-loop term in the exponent. In brief, the rule for calculating the complete expo-

nent [51, 52] is to restrict to those parts of the diagrams which give a “maximal non-abelian

colour factor”. At two loops, this turns out to be equal to CF CA [54], where CF := C2(r)

is the Casimir in the representation r of the Wilson loop, and CA := C2(G) is the adjoint

Casimir.6 For SU(N), one has CF = (N2 − 1)/(2N) for the fundamental representation,

and CA = N .

As a simple example, consider the two-loop contribution to a cusp diagram aris-

ing from diagrams containing only propagators. The contribution from a ladder dia-

gram produces the colour factor Tr(T aT aT bT b) = dF C2
F , whereas the cross propaga-

tor diagram, represented on the left hand side of figure 7, contains the colour factor

Tr(T aT bT aT b) = dF CF (CF − 1/2CA). According to the non-abelian exponentiation theo-

rem, we only have to consider the term −(1/2)CF CA from the cross propagator diagram,

and discard the remaining diagram altogether (which has already been taken contributed

to the exponentiation of the one-loop correction).

As a final remark, we would like to observe that the diagrams needed to calculate these

maximally non-abelian corrections are simpler (and fewer) than those needed for the full

Wilson loop, however the technical difficulties in obtaining the final integrals in analytic

form are typically comparable.

We now move on to describing the basic ingredients of any Wilson loop perturbative

calculation. The first one is the gluon propagator which, in the Feynman gauge, is given

by ∆µν(x) := ηµν∆(x), where

∆(x) := −π2−D

2

4π2
Γ

(
D

2
− 1

)
1

(−x2 + iε)
D

2
−1

(3.4)

= −πǫUV

4π2

Γ(1 − ǫUV)

(−x2 + iε)1−ǫUV

,

where D = 4− 2ǫUV. The Wilson loop is gauge invariant, therefore we can pick any gauge

we like to compute its expectation value.7

At two loops, we will also have Feynman diagrams where the gluon three-point vertex

contributes. The basic structure to know is therefore the Wick contraction of three gauge

6We notice that, in order to be properly normalised, the Wilson loop in (3.1) should be divided by the

dimension of the representation dF := d(r).
7The advantage of considering different gauges, still belonging to the class of Feynman-’t Hooft gauges,

has been discussed recently in [55]. A different possibility would be to pick the lightcone gauge. This gauge

has been used for Wilson loop calculations in [56].
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fields with a three-point vertex,

Wick
[
Aµ1,a1(x1)A

µ2,a2(x2)A
µ3,a3(x3)

∫
dDz Tr

(
∂µAν [Aµ, Aν ]

)
(z)
]

(3.5)

= −iCF fa1a2a3×
[
ηµ1µ2(∂µ3

1 − ∂µ3

2 ) + ηµ2µ3(∂µ1

1 − ∂µ1

2 ) + ηµ3µ1(∂µ2

1 − ∂µ2

2 )
]
G(x1, x2, x3) ,

where

G(x1, x2, x3) :=

∫
dDz∆(x1 − z)∆(x2 − z)∆(x3 − z) (3.6)

=
(i)1−2D

64πD
Γ(D − 3)

∫ 3∏

i=1

dαiδ

(
1−

3∑

i=1

α1

)
(α1α2α3)

D

2
−2

(α1α2x2
12+α1α3x2

13+α2α3x2
23)

D−3
,

where we have used (3.4) and x2
ij = (xi − xj)

2. The evaluation of the right hand side

of (3.6) in various cases, specifically when x2
2 = x2

3 = x2
23 = 0, has been carried out in [54].

Finally, we notice that the colour factor associated with gluon three-point vertex dia-

grams, obtained after contracting with a trace of three colour generators, is Tr(T a1T a2T a3)

fa1a2a3 = (1/2)dF CF CA.

3.2 The Wilson loop remainder function

We define the n-sided Wilson loop remainder function RWL
n in complete analogy with the

amplitude remainder function introduced in (2.19), as

w(2)
n (ǫ) = f

(2)
WL(ǫ)w(1)

n (2ǫ) + C
(2)
WL + RWL

n , (3.7)

where ǫ = −ǫUV. We have added a subscript WL to distinguish quantities relevant for the

Wilson loop from the corresponding amplitude expressions. In particular,

f
(2)
WL(ǫ) := f

(2)
0 + f

(2)
1,WLǫ + f

(2)
2,WLǫ2 , (3.8)

where f
(2)
0 is the same as in (2.7), whilst f

(2)
1,WL = G

(2)
eik = 7ζ3 [53], and the third term f

(2)
2,WL

is a so far undetermined constant. Similarly, the constant C
(2)
WL in (2.19) has also not been

fixed yet. We will shortly determine these two constants.

A few comments are in order.

Firstly, we notice the already mentioned discrepancy between the coefficient G
(2)
eik of

the subleading 1/ǫ pole in the Wilson loop and the corresponding coefficient G(2) appearing

in (2.9) on the amplitude side. This discrepancy has been examined and explained in [57].

We note that this discrepancy cannot be reabsorbed into a (kinematic-independent) redef-

inition of the Wilson loop renormalisation scale µWL alone.8

Secondly, we would like to point out that if the correct determination of the constants

f
(2)
2,WL and C

(2)
WL is implemented also for Wilson loops, we expect the Wilson loop remainder

function to have precisely the same collinear limit as its amplitude counterpart, namely

RWL
n → RWL

n−1 , (3.9)

8See also the discussion in [23] (version 3).

– 12 –



J
H
E
P
0
5
(
2
0
0
9
)
1
1
5

with no extra constant term on the right hand side of (3.9).

In order to determine C
(2)
WL and f

(2)
2,WL, and later be able to check (3.9), we proceed

as follows. Firstly, we recall that conformal invariance guarantees that the four- and five-

point Wilson loops satisfy an ABDK/BDS-like ansatz [18]. This implies that the remainders

RWL
4 and RWL

5 cannot depend on kinematics and must be constant. On the amplitude

side, these remainder functions are known to vanish. Thus we also choose

RWL
4 = RWL

5 = 0 , (3.10)

in (3.7) and then determine C
(2)
WL and f

(2)
2,WL from solving (3.7) for n = 4, 5.

Notice that in writing the Wilson loop ABDK/BDS ansatz, it is crucial to use the one-

loop Wilson loop, and not the one-loop amplitude. The two are equal to all orders in ǫ up to

their normalisation [16]. More concretely, for the amplitude we have M(1)
n = 2ĉΓM(1)

n,BDDK

where M(1)
n,BDDK is the one-loop amplitude in the normalisations of [35], and

ĉΓ :=
eǫγ

2

Γ(1 + ǫ)Γ2(1 − ǫ)

Γ(1 − 2ǫ)
. (3.11)

This leads to M(1)
n = eǫγΓ(1 + ǫ)(Γ(1 − ǫ)2/Γ(1 − 2ǫ))M(1)

n,BDDK. On the other hand,

for the Wilson loop, we have9 w
(1)
n = eǫγΓ(1 + ǫ)M(1)

n,BDDK. This leads to the following

correspondence between the Wilson loop and the amplitude at one loop,

w(1)
n =

Γ(1 − 2ǫ)

Γ2(1 − ǫ)
M(1)

n = (1 + ζ2ǫ
2)M(1)

n + O(ǫ) = M(1)
n − n

π2

12
+ O(ǫ) . (3.12)

At one loop, the four- [15] and five-edged Wilson loops [16] are thus given by

w
(1)
4 = − 1

ǫ2

[(
− s

µ2

)−ǫ

+

(
− t

µ2

)−ǫ
]

+
1

2
log2

(s

t

)
+

π2

3
, (3.13)

w
(1)
5 =

1

2

5∑

i=1


− 1

ǫ2

(
− t

[2]
i

µ2

)−ǫ

− 1

2
ln

(
−t

[2]
i

−t
[3]
i

)
ln

(
−t

[2]
i+1

−t
[2]
i+2

)
+

π2

12


 , (3.14)

and at two loops [17, 18]

w
(2)
4 = 2

[(
− s

µ2

)−2ǫ

+

(
− t

µ2

)−2ǫ
](

π2

48ǫ2
− 7ζ3

8ǫ

)
− π2

12
log2

(s

t

)
− π4

24
, (3.15)

w
(2)
5 =

5∑

i=1

(
− t

[2]
i

µ2

)−2ǫ(
π2

48ǫ2
− 7ζ3

8ǫ

)
+

π2

24

5∑

i=1

ln

(
−t

[2]
i

−t
[3]
i

)
ln

(
−t

[2]
i+1

−t
[2]
i+2

)
− π4

72
. (3.16)

We note that in (3.15) we have used the results of our two-loop calculation of the four-point

Wilson loop to correct the constant term in the corresponding result of [17].10

9In the following formulae we employ the redefinition of the renormalisation scale in (4.3).
10This discrepancy has also been noted independently by Marcus Spradlin, whom we thank for discussions

on this point.
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We can now uniquely rewrite (3.15) and (3.16) in an ABDK/BDS form as

w
(2)
4 (ǫ) = f

(2)
WL(ǫ)w

(1)
4 (2ǫ) + C

(2)
WL , (3.17)

w
(2)
5 (ǫ) = f

(2)
WL(ǫ)w

(1)
5 (2ǫ) + C

(2)
WL , (3.18)

where

f
(2)
WL(ǫ) = −ζ2 + 7ζ3 ǫ − 5ζ4 ǫ2 , (3.19)

and

C
(2)
WL = −1

2
ζ2
2 . (3.20)

The O(1) and O(ǫ) coefficients of f
(2)
WL(ǫ) had already been determined in [17]. Interestingly,

the constant C
(2)
WL turns out to be the same as the constant C(2) in (2.5) for the amplitude.

Finally, let us now compare the definition of the remainder function RWL
6 given in (3.7)

with that of DHKS [22, 23] (see also appendix A). First, we write the two-loop term w(2)

in the form

w(2)
n =

n∑

i=1

(
−x2

ii+2

µ2

)−2ǫ
(

w
(2)
−2

ǫ2
+

w
(2)
−1

ǫ

)
+ F (2)

n + O(ǫ) , (3.21)

where F
(2)
n is finite as ǫ → 0.

From (3.15) and (3.16), one has

w
(2)
−2 =

π2

48
, w

(2)
−1 = −7

8
ζ3 , (3.22)

and comparing (3.21) with (3.7), using (3.12) and (2.13), we obtain

F (2)
n =

1

4
γ

(2)
K F (1)

n (0) + C
(2)
WL + RWL

n + n
π4

48
. (3.23)

The DHKS finite remainder function is then defined as [21, 23]

RDHKS
n := F (2)

n − FBDS (2)
n , (3.24)

where F
BDS (2)
n is the two-loop contribution to FBDS

n in (2.12),

FBDS (2)
n =

1

4
γ

(2)
K F (1)

n (0) + C(2) . (3.25)

Thus we find that our finite remainder defined in (3.7) and the DHKS definition (3.24) are

related by a constant shift,

RWL
n = RDHKS

n − n
π4

48
. (3.26)

We have checked that our Wilson loop remainder function RWL
n satisfies (3.9) under a

collinear limit. For n = 6 this amounts to RWL
6 → RWL

5 = 0. This would imply that

RDHKS
6 → π4/8 = 12.1761 . . . , (3.27)
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which is completely consistent with the results of [23], where this was computed numerically

as cW := 12.1756 with accuracy of the order 10−3. In the following sections we will show

that (3.9) also holds for n = 7, 8.

We can now express the statement of the duality between Wilson loops and amplitudes

as an equality of the corresponding remainder functions defined in (3.7) and (2.19),

Rn = RWL
n . (3.28)

Notice that no additional constant term is allowed on the right hand side of (3.28).

4 Summary of the diagrams entering the Wilson loop at two loops

In this section we summarise the expressions for all the diagrams entering a generic two-

loop Wilson loop calculation. There are five main ingredients to the two-loop Wilson loop

calculation at any number of edges, n. We call them the “hard diagram”, the “curtain

diagram”, the “cross diagram”, the “Y diagram”, and the “factorised cross diagram”, see

figures 2–6.

In the following we summarise the final expressions for the integrals corresponding to

these diagrams; derivations are outlined in the appendices. The entire two-loop contribu-

tion to the logarithm of the Wilson loop is assembled in terms of the individual building

blocks in section 4.6.

In all expressions of the diagrams we will write in the next sections, a factor of

C := 2a2µ4ǫ
[
Γ(1 + ǫ)eγǫ

]2
= 2a2µ4ǫ

(
1 +

π2

6
ǫ2

)
+ O(ǫ3) , (4.1)

will be pulled out, where we have defined the coupling

a :=
g2N

8π2
, (4.2)

and the scale, µ2, is given in terms of the Wilson loop scale as

µ2
WL := πeγµ2 . (4.3)

This factor will be reintroduced when the diagrams are reassembled into the complete

Wilson loop (4.12) in order to match the conventions of [23] and facilitate comparisons

with their results.

4.1 The hard diagram

The hard diagram is depicted in figure 2, and is given by the integral:

fH(p1, p2, p3;Q1, Q2, Q3)

:=
Γ(2 − 2ǫUV)

Γ(1 − ǫUV)2

∫ 1

0

(
3∏

i=1

dτi

)∫ 1

0

(
3∏

i=1

dαi

)
δ

(
1 −

3∑

i=1

αi

)
(α1α2α3)

−ǫUV
N

D2−2ǫUV

,

(4.4)
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p3

p1

p2

Q1

Q2 Q3

Figure 2. The hard diagram.

p3

p1

p2

Q1

Q2

Q3

Figure 3. The curtain diagram.

where the functions D and N are given in (B.2), (B.5). The momenta pi are massless p2
i = 0

and the Qi can be massive. They are further constrained by momentum conservation

p1 + p2 + p3 + Q1 + Q2 + Q3 = 0 . (4.5)

4.2 The curtain diagram

The curtain diagram is represented in figure 3, and its expression is given by the integral

fC(p1, p2, p3;Q1, Q2, Q3) (4.6)

:= −1

2

∫ 1

0

(
3∏

i=1

dτi

)∫ 1

1−τ1

dσ1
(p1p2)[

− 2(p1Q3)σ1 − 2(p1p2)σ1τ2 − 2(p2Q3)τ2 − Q2
3

]1−ǫUV

× (p1p3)[
− 2(p1Q2)τ1 − 2(p1p3)τ1τ3 − 2(p3Q2)τ3 − Q2

2

]1−ǫUV
.

The pi and Qi are constrained as in (4.5).
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p1

Q2

Q1

p2

Figure 4. The cross diagram.

4.3 The cross diagram

The cross diagram is represented in figure 4, and is given by

fX(p1, p2;Q1, Q2)

:= −1

2

∫ 1

0
dσ1dτ2

∫ σ1

0
dτ1

∫ τ2

0
dσ2

(p1p2)(
− 2(p1p2)σ1σ2 − 2p1Q2σ1 − 2p2Q2σ2 − Q2

2

)1−ǫUV

(p1p2)(
− 2(p1p2)τ1τ2 − 2p1Q2τ1 − 2p2Q2τ2 − Q2

2

)1−ǫUV

(4.7)

Again the pi are massless and the Qi massive and momentum conservation is imposed,

p1 + p2 + Q1 + Q2 = 0 . (4.8)

4.4 The Y diagram + self-energy diagram

The Y diagram, to which we also add (half of) the self-energy diagram,11 represented in

figure 5, is given by the following integral,

fY (p1, p2;Q1, Q2) :=
p1 · p2

8

1

ǫUV

Γ(1 − 2ǫUV)

Γ2(1 − ǫUV)
(4.9)

∫ 1

0
dσ

∫ 1

0
dτ1dτ2

[
− σ−ǫUV(1 − σ)−ǫUV

(−Q2
1−2(Q1p2)τ2−2(Q1p1)στ1−2(p1p2)στ1τ2)1−2ǫUV

− σ−ǫUV(1 − σ)−ǫUV

(−Q2
2−2(Q2p2)τ2−2(Q2p1)στ1−2(p1p2)στ1τ2)1−2ǫUV

]
.

4.5 The factorised cross diagram

This is given as −1/2 times the product of two one-loop diagrams

−1/2fP (pi, pj ;Qji, Qij)fP (pk, pl;Qlk, Qkl) . (4.10)

11The other half of the self-energy accompanies the “upside-down” Y diagram.
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p1

Q1 Q2

p1

p2 p2

Q1 Q2

Figure 5. The Y diagram together with the self-energy diagram.

pi pj

pk

pl

Figure 6. The factorised cross diagram.

The one-loop terms come from a diagram involving just a single propagator, and are simply

the finite part of the two-mass easy box function [16]

fP (p, q;P,Q) =
1

2

[
1

2
log2

(s

t

)
+ Li2

(
1 − P 2

s

)
+ Li2

(
1 − Q2

s

)
+ Li2

(
1 − P 2

t

)

+ Li2

(
1 − Q2

t

)
− Li2

(
1 − P 2Q2

st

)]
, (4.11)

where s = (P + p)2 and t = (P + q)2.
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4.6 The complete Wilson loop at n points

The logarithm of the complete n-sided Wilson loop is given by the sum over all diagrams,

w(2)
n = C

{ ∑

1≤i<j<k≤n

[
fH(pi, pj , pk;Qjk, Qki, Qij) + fC(pi, pj , pk;Qjk, Qki, Qij)

+ fC(pj, pk, pi;Qki, Qij , Qjk) + fC(pk, pi, pj;Qij , Qjk, Qki)
]

+
∑

1≤i<j≤n

[
fX(pi, pj ;Qji, Qij) + fY (pi, pj ;Qji, Qij) + fY (pj , pi;Qij , Qji)

]

+
∑

1≤i<k<j<l≤n

(−1/2)fP (pi, pj ;Qji, Qij)fP (pk, pl;Qlk, Qkl)

}
, (4.12)

where the first sum is over all sets of three non-equal legs i, j, k, the second sum is over all

sets of two non-equal legs i, j, and the third sum over all sets of four non-equal legs. Here

we have defined

Qij = pi+1 + pi+2 + . . . pj−1 , (4.13)

and C is the factor we pulled out (see (4.1)).

Note that the singular properties of these integrals depends on whether Qi = 0 or

not (i.e. whether legs are adjacent or not). For example fH has a 1/ǫUV

2 singularity if

Q1 = Q2 = 0, Q3 6= 0, a 1/ǫUV singularity if Q1 = 0, Q2, Q3 6= 0, and is finite as ǫUV → 0

if Q1, Q2, Q3 6= 0.

In the four-point case, for example, (4.12) leads to

w
(2)
4 = C

{
fH(p1, p2, p3; 0, p4, 0)

+ fC(p1, p2, p4; p3, 0, 0) + fC(p1, p2, p3; 0, p4, 0) + fC(p1, p3, p4; 0, 0, p2)

+
1

2
fX(p1, p3; p4, p2) + fX(p1, p2; p1 + p2, 0)

+ fY (p1, p3; p4, p2) + fY (p1, p2; p1 + p2, 0) + fY (p2, p1; 0, p1 + p2)

+ (−1/8)fP (p1, p4; p2)fP (p2, p4; p1, p3)

+ cyclic permutations of (p1, p2, p3, p4)

}
(4.14)

(the factor of 1/2 in front of fX and the extra factor of 1/4 in from of the factorised cross is

to account for the double counting of diagrams when summing over cyclic permutations).

Of course everything should only depend on s = (p1 + p2)
2 and t = (p1 + p4)

2.

4.7 Cusp diagrams

The formula for the exponent of the Wilson loop at two loops (4.12) includes all contributing

diagrams. A subset of these diagrams involve only two consecutive edges and are known

– 19 –



J
H
E
P
0
5
(
2
0
0
9
)
1
1
5

Figure 7. Maximally non-abelian Feynman diagrams contributing to the two-loop cusp corrections.

The second diagram appears with its mirror image where two of the gluon legs of the three-point

vertex are attached to the other edge; these two diagrams are equal. The blue bubble in the third

diagram represents the gluon self-energy correction calculated in dimensional reduction.

as cusp diagrams. These are given by

C
n∑

i=1

(
fX(pi, pi+1;Qi+1i, 0) + fY (pi, pi+1;Qi+1i, 0) + fY (pi+1, pi; 0, Qi+1i)

)
, (4.15)

and are shown in figure 7.

The final result for the two-loop correction to the cusps is given by

CF CA

(
g2

4π2

)2 [
Γ(1 + ǫ)π−ǫ

]2 n∑

i=1

(
−x2

ii+2

µ2
WL

)−2ǫ

fcusp(ǫ) , (4.16)

where

fcusp(ǫ) =
1

2

1

8ǫ4

[Γ(1 + 2ǫ)Γ(1 − ǫ)

Γ(1 + ǫ)
− 1
]

=
π2

48ǫ2
− ζ3

8ǫ
+

π4

160
+ O(ǫ) . (4.17)

This way, one can rewrite (4.16) using the redefinition of µ (4.3) as

2a2
n∑

i=1

(
−x2

ii+2

µ2

)−2ǫ [
Γ(1 + ǫ)eγǫ

]2
fcusp(ǫ) . (4.18)

Since
[
Γ(1 + ǫ)eγǫ

]2
fcusp(ǫ) =

π2

48ǫ2
− ζ3

8ǫ
+

7π4

720
+ O(ǫ) , (4.19)

we obtain that the contribution from all cusps is therefore

2a2

[
n∑

i=1

(
−x2

ii+2

µ2

)−2ǫ(
π2

48ǫ2
− ζ3

8ǫ

)
+

7π4

120

]
+ O(ǫ) . (4.20)

Equation (4.20) is exactly equal to the corresponding cusp results in [23] (after considering

that their ǫ is the ultraviolet parameter).
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5 Evaluation of Wilson loop diagrams

An intriguing property of the n-point polygon Wilson loop parameterisations from section 4

is that they are valid for an arbitrary n. The infrared properties of the integrals needed

to evaluate the diagrams may change from more to less divergent, however all cases can

be obtained from the same starting expressions involving parametric integrals with five

dimensions at most. This is to be contrasted with the Feynman parameterisations of

Feynman amplitudes, which require a different representation with additional parameters

as the number of external legs n is increased.

Our goal is to construct an algorithm which evaluates the diagrams of the previous

section in complete generality, for an arbitrary number of points, n. This has been achieved

for up to n = 6 in the literature [25]. Given the fact that the number of Feynman parameter

integrations and the number of distinct “master” functions required for an evaluation at

different values of n is independent of it, one could aim for solving this problem in complete

generality. It is very exciting that Wilson loops and N = 4 SYM planar MHV amplitudes

are very likely to be dual to each other. If this is proven correct, solving the problem

of calculating two-loop n-gon Wilson loops also provides a solution to the problem of

evaluating planar two-loop amplitudes with an arbitrary number of legs.

A fully analytic evaluation of the master functions in arbitrary n-point Wilson loops

appears to be a formidable task. A more viable and practical approach is to evaluate these

integrals numerically. Many of the required integrals develop divergences when ǫ = 0,

with 1/ǫ2 poles at most. We use the programs developed in [58–61] for evaluating generic

Feynman diagrams in order to automatically cast these integrals as Laurent series in ǫ. The

coefficients of the series are multidimensional integrals, however they are free of singularities

in the dimensional regularisation parameter, and we can evaluate them numerically using

well established stochastic integration methods [62].

We notice that we have evaluated the finite “hard diagrams” (which appear for the

first time at n ≥ 6 points), using an alternative approach; this is possible because the

diagram is free of singularities in the limit ǫ → 0. We recall that a one-loop scalar triangle

can be written using Feynman parameters as

Tria(D; ν1, ν2, ν3) :=

∫
dDk

iπ
D

2

1

(k2)ν1 [(k + p1)2]
ν2 [(k + p1 + p2)2]

ν3
(5.1)

= (−1)ν123
Γ
(
ν123 − D

2

)

Γ(ν1)Γ(ν2)Γ(ν3)

∫ 3∏

i=1

dαi δ

(
1 −

3∑

i=1

αi

)
αν1−1

1 αν2−1
2 αν3−1

3

(α1α2p2
1 + α2α3p2

2 + α3α1p2
3)

ν123−
D

2

,

with p3 = −p1 − p2 and ν123 := ν1 + ν2 + ν3. Interestingly, this is the same function

as the triple-gluon vertex of (3.6). In the absence of divergences, as occurs in the hard

diagrams with nonvanishing Q1, Q2 and Q3, we can set D = 4 (equivalently ǫ = 0) in (3.6).

By comparing (3.6) and (5.1), we observe that the triple-gluon vertex is a sum of one-

loop scalar triangles in D = 6 dimensions, with powers of propagators taking the values

νi = 1, 2.

We exploit the mapping of the vertex of (3.6) onto familiar one-loop integrals to

simplify it before we insert its expression into the hard diagram. Using an automated
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reduction program [63], we express the finite part of the vertex as a linear combination of

triangle Tria(6 − 2ǫ; 1, 1, 1), and bubble Tria(4 − 2ǫ; 0, 1, 1), Tria(4 − 2ǫ; 1, 0, 1), Tria(4 −
2ǫ; 1, 1, 0) master integrals. Notice that we have re-introduced the dimensional regulator

ǫ because these master integrals are all divergent as ǫ → 0. However, we can set ǫ = 0

after we substitute the analytic expressions for the bubble master integrals, and a Feynman

representation derived from (5.1) for the triangle master integral in six dimensions. An

alternative basis of master integrals can be obtained using dimensional shift identities [64,

65], where the triangle master integral is also in four dimensions. However, this choice is

inconvenient for numerical evaluations, because the dimensional shift generates a Gram

determinant in the denominator
1

∆̂3(p
2
1, p

2
2, p

2
3)

,

which spoils the numerical convergence of stochastic integration.

The calculation of the “hard diagram” is performed with a five-dimensional numerical

integration after expressing the vertex in terms of master integrals. A näıve numerical

integration of the expression in (4.4), without a reduction of the vertex to master integrals,

is also five dimensional. However, our reduction method has the advantage of removing

integrable singularities which may emerge in certain kinematic limits. Importantly, the

näıve numerical integration method becomes unstable for n ≥ 8, while the combination of

the reduction with numerical integration is stable and efficient.

As we have mentioned, the number of “master” functions required is independent of n.

However, there are many possibilities for the kinematic invariants which enter as arguments

of these functions — they can be squares of either lightlike or massive momenta. However,

we notice that evaluating the same master integrals with some of the kinematical invariants

equal to zero may (and often does) yield a different structure of infrared or integrable

singularities. Therefore, these cases are treated distinctly in our numerical approach.

In the rest of the paper, we present explicit results for n = 6, 7, 8. This exhausts

all possibilities for the distinct configurations in the evaluation of the diagrams of the

previous session. The computation of n > 7 polygon Wilson loops proceeds with an

identical algorithm as for n = 7.

6 Six-point Wilson loops

An analytic form of the six-point remainder function RWL
6 (u1, u2, u3), where the six-point

cross-ratios u1,2,3 have been defined in (2.25), is currently not available. However we have

used our numerical methods to map this function in a number of ways, as we will now

report.

Before doing this, we note that some numerical calculations of values of the six-point

remainder function were presented in [23]. As an initial check on the validity and con-

sistency of our methods, we compared our results with those of this reference; we found

complete agreement. Recall that we are using a different definition for the remainder

function than [22, 23], which for the hexagon Wilson loop implies RWL
6 (u1, u2, u3) =

RDHKS
6 (u1, u2, u3) − cW. In [23] cW was found to be equal to 12.1756 with an absolute
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(u1, u2, u3) RWL
6 (A) RWL

6 (B) RWL
6 (C)

(1/9, 1/9, 1/9) 5.18056 5.18096 5.18102

(1/4, 1/4, 1/4) 1.08916 1.08916 1.08919

(1, 1, 1) -2.70814 -2.7066 -2.70657

(100, 100, 100) -2.09134 -2.09204 -2.09228

Table 1. Checks of conformal invariance of the remainder function RWL
6 . In each horizontal line

we present values of RWL
6 for different kinematic points (A), (B) and (C) that yield the same

cross-ratios (u1, u2, u3). We find that within our numerical, absolute errors ±0.01 the values match

perfectly. Note that this estimate of the errors is rather conservative and that the actual error is

closer to ±0.001.

accuracy of about 10−3 and we observe that this is close to π4/8 ∼ 12.1761. For example,

studying the collinear limit with our numerical routines we found

RWL
6 (0, u, 1 − u) = 0 ± 0.01 , (6.1)

in agreement with [22]. Note that one cannot simply calculate values of this function with

one of the u variables set to zero, as the errors grow as any of the variables approaches

zero; however one can plot the functions obtained for RWL
6 (u1, u, 1 − u) for various values

of u1 and see that this function becomes flat as u1 → 0 [22]. We have done this with our

routines and find the value 0 ± 0.01, in agreement with the value 12.1756 found in [23]

for RDHKS
6 in the collinear limit. Furthermore, (6.1) implies that RWL

6 (0, 0, 1) = 0, which

is consistent with the predictions of [20, 66–68] derived in the multi-Regge kinematics (at

least in the case where all the kinematic invariants are defined in the Euclidean region

−s ≫ −si ≫ −ti > 0).

In table 2 of [23], a number of values of RDHKS
6 are also listed for different kinematics.

We have checked the values of the remainder function for all these inputs and are in perfect

agreement with the quoted results up to the ubiquitous constant cW.

The remainder function RWL
6 (u1, u2, u3) is also symmetric under permutations of the

three cross-ratios. We have checked this in various particular cases and it is also amply

confirmed by the results plotted in the graphs below. Before we discuss some plots of our

numerical results in more detail we wish to add a couple of comments on the dual conformal

invariance of RWL
6 (u1, u2, u3), which implies that in the six-point case the remainder func-

tion should depend on the explicit gluon momenta only through the cross-ratios u1, u2, u3.

An important check of our calculation of RWL
6 is to verify that it indeed depends on the

gluon momenta only through the conformal cross-ratios u1, u2 and u3. We have confirmed

that this is indeed the case numerically by considering various kinematical points where we

held the cross-ratios fixed but varied the Mandelstam variables x2
ii+2 and x2

ii+3. Further-

more, we have tested conformal invariance of our results for kinematic points that obey

the Gram determinant constraints (strictly four-dimensional kinematics) and for kinematic

points that do not obey the Gram determinant constraints. We always found perfect agree-

ment within our numeric accuracy for RWL
6 (u1, u2, u3) as long as the cross-ratios were held

fixed.
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Figure 8. A plot of the remainder function of the hexagon Wilson loop with u1 = u2 = u3 = u.

For the location of the minimum of this function we found a numerical value of u = 3.83 ± 0.01.

In the following we give a couple of explicit examples to demonstrate dual conformal

invariance of the remainder function at six points. To be more concrete we consider four

kinematic points u1 = u2 = u3 = 1/9, 1/4, 1, 100, with (A) x2
ii+2 = −1, (B) x2

13 = x2
24 =

−1, x2
35 = x2

46 = x2
51 = x2

62 = −2 and (C) x2
13 = x2

24 = −1, x2
35 = x2

46 = −2, x2
51 =

x2
62 = −3. The numerical results for these kinematic points are collected in table 1. In

general these kinematic configurations do not obey the Gram determinant constraint, but

we have checked for numerous values of (u1, u2, u3) that RWL
6 is independent of the Gram

determinant constraint as was also observed in [23] for one particular set of cross-ratios.

We will here only discuss in detail the case u1 = u2 = u3 = 100 for which one possible

kinematic point, consistent with the Gram determinant constraint, is given by:

x2
13 = x2

35 = x2
46 = x2

62 = −20 + 3
√

42

2
, x2

24 = x2
51 = −1 ,

x2
14 = x2

25 = − 1

10
, x2

36 = −389 + 60
√

42

20
. (6.2)

For this particular kinematic configuration the numerical evaluation of the remainder func-

tions yields −2.099 with an absolute error of about ±0.02, which is in agreement with the

last row of table 1.

We now turn to describe additional numerical results we have found for RWL
6 (u1, u2, u3).

In order to explore possible analytic expressions for this function, we first considered

F6(u) ≡ RWL
6 (u, u, u). (6.3)

A plot of this function is given in figure 8. Salient features are the minimum value of F6(u)

which is −3.60(±0.01) at u = 3.83(±0.01) and the asymptotic value F6(u) → −0.67(±0.05)
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Figure 9. This graph contains five plots of the remainder function of the hexagon Wilson loop

with u1 = u, u2 = v and u3 = w. The cross-ratios u and v vary between 10−3 and 105 while for w

we have chosen five fixed values: w = 1 blue plot, w = 10 green plot, w = 100 yellow plot, w = 1000

orange plot, and w = 10000 red plot.

as u → ∞. Another special value is F6(1) = −2.706(±0.007). It is interesting to observe

that the minimum of F6(u) and F6(1) are well approximated by transcendentality four

numbers, namely −π4

27 ∼ −3.6077 and −π4

36 ∼ −2.7058, respectively.

Some of the generic features of F6(u) are reproduced well by transcendentality four

functions. For example, we comment that ln(u) Li3(−1/u)+(1/3) ln(u)2 Li2(−1/u) matches

the asymptotic behaviour of F6(u), behaving as const · ln(u)2 at u → 0 and going to

a constant as u → ∞, as well as matching its general shape. Whilst this is perhaps

encouraging, at present we do not have a global match of our numerical results to an explicit

function with transcendentality four. We also observe from our data that F6(u) ∼ ln2(u)

for asymptotically small values of u. If the multiplicative constant is equal to rational

number times π2, this is consistent with transcendentality four behavior.

A more complete picture of the structure of the remainder function may be obtained

by exhibiting a selection of slices of RWL
6 (u, v,w) at different values of w. Due to the slowly

changing behaviour of the function as u and v vary, it proves instructive to give log-based

plots — in the following the u, v coordinates run from 10−3 to 105 (listed as −3, . . . , 5 in the

figure). In figure 9 and figure 10 we present from different viewpoints plots of the function

RWL
6 (u, v,w) for these values of (u, v), in five cases where w = 1, 10, 100, 1000, 10000.

One may make a number of comments regarding these plots. Firstly, the symmetry of

the function under the interchange of u and v is apparent (and is manifest in the actual

data). Secondly, for the values of w considered, for small u, v the remainder function takes

a large negative value for w large, and increases as w decreases. The order of these hyper-

surfaces reverses as u or v increase, and for large values of these variables, the remainder

function becomes increasingly negative (as of course required by the symmetry property and
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Figure 10. This graph contains five plots of the remainder function of the hexagon Wilson loop

with u1 = u, u2 = v and u3 = w. The cross-ratios u and v vary between 10−3 and 105 while for w

we have chosen five fixed values: w = 1 blue plot, w = 10 green plot, w = 100 yellow plot, w = 1000

orange plot, and w = 10000 red plot.

the behaviour at large u). For all three variables large, the remainder function approaches

a constant which is equal to the asymptotic value of F6(u) (about −0.67). In general, it is

apparent from figures 8–10 that the remainder function is rather smooth for all values of

the cross-ratios.

7 Seven-point Wilson loops and collinear limits

In this section we wish to address two separate issues.

Firstly, we present numerical evidence that the seven-point Wilson loop remainder

function is a function of the appropriate seven-point cross-ratios as is required by the dual

conformal invariance. As anticipated in section 2.1, we define these cross-ratios without

requiring the Gram determinant conditions, therefore we expect to have seven cross-ratios

at seven points. As a basis of seven independent cross-ratios at seven points, we will choose

the following quantities,

u14, u25, u36, u47, u15, u26, u37 , (7.1)

where uij is defined in (2.23).

Next, we will study how the remainder function behaves under collinear limits. In

particular, we will see that the seven cross-ratios in (7.1) will naturally flow into four

parameters, three of which are naturally related to the three six-point cross-ratios; we will

then present evidence that there is in fact no dependence on the fourth parameter, related

to the parameter z introduced in the collinear limit (see (7.3) below). As we shall discuss,

our results support the conjecture that the remainder function of the Wilson loops should

be equal to the corresponding remainder function on the amplitude side.
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(u14, u25, u36, u47, u15, u26, u37) RWL
7 (A) RWL

7 (B)

(1, 1, 1, 1, 1, 1, 1) -3.85627 -3.85732

(1/4, 1/4, 1/4, 1/4, 1/4, 1/4, 1/4) 8.13063 8.13272

(1/4, 1, 1, 1/4, 1, 1, 1) -4.40748 -4.40651

(1, 1/4, 1, 1, 1/4, 1, 1) -4.40657 -4.40056

(1, 1, 1/4, 1, 1, 1/4, 1) -4.40654 -4.40559

(1, 1, 1, 1/4, 1, 1, 1/4) -4.40746 -4.40617

(1, 1/2, 1, 1, 1, 1/4, 1) -4.27219 -4.27108

(1, 1/4, 1, 1, 1, 1/2, 1) -4.27224 -4.27049

(1/4, 1, 1/4, 1, 1, 1, 1) -4.63668 -4.63696

Table 2. Checks of conformal invariance and invariance under cyclic permutations of the u’s and

reflection symmetry of the remainder function RWL
7 . In each horizontal line we present values

of RWL
7 for different kinematic points (A) and (B) that yield the same cross ratios. We find

that within our numerical, absolute errors, which range between ±0.001 and ±0.01 for individual

kinematic configurations, the values match nicely.

7.1 Seven-point remainder function and conformal invariance

We can now compute two-loop contributions to the logarithm of the seven-point Wilson

loop for arbitrary kinematics. There are fourteen kinematic variables formed by seven

two-particle invariants and seven three-particle invariants. In this case we keep the two-

particle invariants as independent inputs, and trade the three-particle invariants for the

seven conformally invariant cross-ratios defined above.

The sum of all relevant diagrams gives rise to the two-loop contribution to the loga-

rithm of the Wilson loop. After subtracting from it the known BDS expression we find the

remainder function RWL
7 . It follows from our numerical calculations that RWL

7 is indepen-

dent of the non-conformal input (in this case the seven two-particle invariants) and is only

a function of the cross-ratios:

RWL
7 = RWL

7 (u14, u25, u36, u47, u15, u26, u37) . (7.2)

This function is also invariant under cyclic permutations of all u’s and under the reflection

symmetry (which exchanges the clockwise with the anticlockwise ordering of u’s).

Below we give some explicit examples to demonstrate dual conformal invariance of the

remainder function at seven points and invariance under cyclic permutations and reflection.

To be more concrete we consider kinematic points for various values of the conformal cross-

ratios with (A) x2
ii+2 = −1 and (B) x2

ii+2 = −i for i = 1 . . . 7. The numerical results for

these kinematic points are collected in table 2.

We have computed the remainder function for many other values of the cross-ratios.

In figure 11 we display the remainder function when all cross-ratios are equal.

7.2 Simple collinear limits

In this section we present numerical evidence that collinear limits of n-gon Wilson loops

with n = 7 behave in the same way as the corresponding amplitude collinear limits.
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Figure 11. A plot of the remainder function of the seven-sided Wilson loop with all cross-ratios

equal to u.

Collinear limits have been used very often as tools to check the consistency of ansatze

for the expression of infinite sequences of scattering amplitudes, see for example [35]. In

much the same way, by showing that Wilson loops, and in particular the remainder func-

tion, have the expected collinear limits, we can provide further evidence in support of

the conjectured duality between the finite parts of these two a priori completely different

quantities.

We begin with a brief review of the universal behaviour of scattering amplitudes under

simple collinear limits. In this limit, one selects two adjacent momenta pa and pb, and sets

pa = zP , pb = (1 − z)P . (7.3)

The collinear limit is taken by letting P 2 → 0. Under this limit, scattering amplitudes

behave in a well-known, universal way. Consider for instance a one-loop scattering ampli-

tude, A1−loop
n . When the two momenta pa and pb become collinear, the amplitude is known

to factorise as [35–38]

A1−loop
n (1, . . . , aλa , bλb , . . . , n)

a‖b−−→ (7.4)
∑

σ

[
Splittree−σ (aλa , bλb) A1−loop

n−1 (1, . . . , (a + b)σ , . . . , n)

+ Split1−loop
−σ (aλa , bλb) Atree

n−1(1, . . . , (a + b)σ, . . . , n)

]
.

Splittree are tree-level splitting amplitudes, whose explicit forms can be found, for instance,

in [69]. Split1−loop is a one-loop splitting amplitude. Explicit formulae for this one-loop

splitting amplitude, valid to all orders in the dimensional regularisation parameter ǫ, were

presented in [70] and [71]. We quote here the result of [71] for the N = 4 theory:

Split1−loop
−σ (aλa , bλb) = Splittree−σ (aλa , bλb) r

(1)
S (ǫ; z, sab) , (7.5)
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where, to all orders in ǫ,

r
(1)
S (ǫ; z, sab) :=

ĉΓ

ǫ2

(−sab

µ2

)−ǫ
[
1 − 2F1

(
1,−ǫ, 1 − ǫ,

z − 1

z

)
− 2F1

(
1,−ǫ, 1 − ǫ,

z

z − 1

)]
,

(7.6)

and ĉΓ is defined in (3.11).

We now move on to consider the behaviour of the remainder function Rn as defined

in (3.24) under collinear limits, following [21]. Consider then the two-loop term M(2)
n (ǫ) in

the expansion of the amplitude, and write it as

M(2)
n (ǫ) − 1

2

(
M(1)

n (ǫ)
)2

= f (2)(ǫ)M(1)
n (2ǫ) + C(2) + Rn + O(ǫ) , (7.7)

where f (2)(ǫ) := f
(2)
0 + f

(2)
1 ǫ + f

(2)
2 ǫ2 and C(2) are defined in (2.4), (2.5). Using (7.4)

and (7.5), one sees that, under a simple collinear limit, the scalar function M(1) must

behave as [2]

M(1)
n → M(1)

n−1 + r
(1)
S (ǫ; z, sab) , (7.8)

M(2)
n → M(2)

n−1 + r
(1)
S (ǫ; z, sab)M(1)

n−1 + r
(2)
S (ǫ; z, sab) .

It was shown in [1] that splitting amplitudes obey an iterative formula identical to the

homogeneous form of the BDS conjecture for the amplitude, i.e.

r
(2)
S (ǫ; z, sab) −

1

2

(
r(1)(ǫ; z, sab)

)2
= f (2)(ǫ)r

(1)
S (2ǫ; z, sab) + O(ǫ) . (7.9)

Using (7.8) and (7.9), one sees that, under a simple collinear limit,

M(2)
n (ǫ) − 1

2

(
M(1)

n (ǫ)
)2

− f (2)(ǫ)M(1)
n (2ǫ)

→ M(2)
n−1(ǫ) −

1

2

(
M(1)

n−1(ǫ)
)2

− f (2)(ǫ)M(1)
n−1(2ǫ) . (7.10)

Equation (7.7) defined the finite remainder function Rn of the amplitude as

Rn = M(2)
n (ǫ) − 1

2

(
M(1)

n (ǫ)
)2

− f (2)(ǫ)M(1)
n (2ǫ) − C(2) + O(ǫ) , (7.11)

and it follows from (7.10) that in the simple collinear limit Rn → Rn−1, as anticipated

in (2.20).

What about simple collinear limits of Wilson loops? If the duality with amplitudes

holds, we expect that the Wilson loop will have the same collinear limits as the amplitude,

as discussed in (3.9).

Let us now specify this discussion to the seven-point Wilson loop case. Specifically, in

the simple collinear limit of a seven-point amplitude one expects to find

RWL
7 (u14, u25, u36, u47, u15, u26, u37) → RWL

6 (u1, u2, u3) , (7.12)
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Figure 12. The cross-ratios u14, u25 and u36u37 of the heptagon Wilson loop which do not include

the cusp at x7. The red dashed lines depict x2
ij segments on the right hand sides of (7.15).

where the seven-point basis of cross-ratios is defined in (7.1), while the six-point basis

in (2.25). Notice that on the right hand side of (7.12) we do not allow for an additional

constant term.

For concreteness we take p6 and p7 to be collinear. We set

p6 = x6 − x7 = zP , p7 = x7 − x1 = (1 − z)P , (7.13)

where as usual P 2 → 0 in the collinear limit. In this collinear limit, the cusp at x7 is

therefore “flattened”. This collinear limit of the seven-point kinematics is characterised by

x2
16 → 0 , x2

27 = (1 − z)x2
26 , x2

57 = zx2
51 , (7.14)

x2
37 = (1 − z)x2

36 + zx2
13 , x2

47 = (1 − z)x2
46 + zx2

14 ,

with all other x2
ij segments unchanged.

As one can see in figure 12, there are three cross-ratios which do not pass through the

cusp at x7. The first two are members of our basis (7.1), whereas the third one is a product

of members of our basis,

u14 :=
x2

15x
2
34

x2
14x

2
35

, u25 :=
x2

26x
2
35

x2
25x

2
36

, u36 u37 :=
x2

13x
2
46

x2
14x

2
36

. (7.15)

These ratios agree precisely with the three variables of the six-point case,

u
(7)
14 → u

(6)
14 = u2 , u

(7)
25 → u

(6)
25 = u3 , u

(7)
36 u

(7)
37 → u

(6)
36 = u1 . (7.16)

where the superscripts on the u’s denote the number of edges of the corresponding Wil-

son loop and u1, u2, u3 are the six-point cross-ratios defined in [22] and given in (2.25).

Specifically, the seven-point cross-ratios defined in (7.1) become (see (2.23))

u14 =
x2

24x
2
15

x2
25x

2
14

, u25 =
x2

26x
2
35

x2
25x

2
36

,

u36 =
x2

46

x2
36

zx2
13 + (1 − z)x2

36

zx2
14 + (1 − z)x2

46

, u47 =
zx2

14

zx2
14 + (1 − z)x2

46

, u15 = 0 ,

u26 =
(1 − z)x2

36

zx2
13 + (1 − z)x2

36

, u37 =
x2

13

x2
14

zx2
14 + (1 − z)x2

46

zx2
13 + (1 − z)x2

36

. (7.17)
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(u1, u2, u3) RWL
7col(κ = 2.5) RWL

7col(κ = 4.9) RWL
6

(1/10, 1, 1) -2.78972 -2.76053 -2.73441

Table 3. Checks of the collinear limit RWL
7 → RWL

6 . We present RWL
7col

(κ) :=

RWL
7

(
u2, u3,

√
u1/κ,

1−
√

u1/κ

1−u1

, 0.01,
1−

√
u1κ

1−u1

,
√

u1κ
)

for different values of κ, together with its

collinear limit R6(u1, u2, u3) for (u1, u2, u3) = (1/10, 1, 1). Within numerical errors the values

agree.

As expected, it follows immediately that u14, u25 and u36 u37 are equal to the three cross-

ratios of the six-point case, as dictated by (7.16). In addition, (7.17) imply that there are

three constraints on the remaining four variables,

u15 = 0 , u47 + u26 u36 = 1 , u26 + u37 u47 = 1 . (7.18)

Taking this into account, and solving the two constraints in (7.18) for u47 and u26 we

conclude that the collinear limit relates the seven-point remainder function to the six-point

one as follows:

RWL
7 (u14, u25, u36, u47, u15, u26, u37) → RWL

7

(
u14, u25, u36,

1 − u36

1 − u37u36
, 0,

1 − u37

1 − u37u36
, u37

)

= RWL
6 (u37u36, u14, u25) . (7.19)

Note that three of the seven variables on the left hand side of (7.19) are constrained, leaving

four variables free. Since the right hand side is a function of only three variables, it follows

that the left hand side actually does not depend on one combination: u37/u36 := κ. Thus

we can rewrite (7.19) in terms of the six-point cross-ratios ui and κ as

RWL
7

(
u2, u3,

√
u1/κ,

1 −
√

u1/κ

1 − u1
, 0,

1 −√
u1κ

1 − u1
,
√

u1κ

)
= RWL

6 (u1, u2, u3) , (7.20)

and note that the left hand side must therefore be independent of the variable κ. This can

be thought of as the z-independence of RWL
7 in the collinear limit — which is precisely the

feature one would expect from the scattering amplitude.

We have computed RWL
7 in the collinear limit and have confirmed that (7.20) does

hold within the errors and that no dependence on κ is found (see table 3 and figure 13 for

example). Again, we stress the absence on the right hand side of (7.20) of any additional

constant term.

In the following section we compare these results with what can be learned from the

multi-collinear limits.

7.3 Multi-collinear limits

Here we would like to derive the multi-collinear equivalent of the general reduction formulae

in (3.9), (7.19)-(7.20) for n-gon Wilson loops.

The first non-trivial case is a triple collinear limit of a six-point configuration considered

in section 5 of [21]. In the limit where p4, p5 and p6 become collinear one has

p4 := x4 − x5 = z1P , p5 = x5 − x6 = z2P , p6 = x6 − x1 = z3P , z1 + z2 + z3 = 1 .

(7.21)
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Figure 13. A plot of the seven-point remainder function minus the six-point remainder function

in the collinear limit. The kinematics are given in (7.20) with (u1, u2, u3) = (1/10, 1, 1) but with a

non-vanishing u15 which varies along the x-axis (u15 vanishes in the collinear limit). For the blue

graph we have κ = 0.25 and for the purple graph κ = 0.49. We see that in both cases the difference

tends to zero with u15, confirming (7.20).

In this limit, the two-loop scalar function M(2)
6 behaves as [21]

M(2)
6 → M(2)

4 + M(1)
4 r

(1)
S

(
s45

s456
,

s56

s456
, z1, z3, ǫ

)
+ r

(2)
S

(
s45

s456
,

s56

s456
, z1, z3, ǫ

)
, (7.22)

where r
(1)
S and r

(2)
S are the one- and two-loop triple splitting amplitudes. The two-loop

triple splitting amplitude does not satisfy an iteration relation similar to the that found

in [1] for the simple splitting amplitude (7.9) [21]. It can however be decomposed into a

term with does, plus a two-loop finite remainder, as

r
(2)
S := r

(2) BDS
S + R̃ . (7.23)

It was shown in [21] that R̃ is nothing but the finite remainder function at six points

evaluated in the triple collinear kinematics. Indeed, in the triple collinear limit the six-

point cross-ratios remain independent and do not vanish, ui → ūi, i = 1, 2, 3, where

ū1 =
1

1 − z3

s45

s456
, ū2 =

1

1 − z1

s56

s456
, ū3 =

z1z3

(1 − z1)(1 − z3)
. (7.24)

Hence,

R6(u1, u2, u3) → R6(ū1, ū2, ū3) . (7.25)

If we now take the triple collinear limit of the remainder function as defined from (7.11),

and use (7.22) and (7.23), we get

R6(u1, u2, u3) → R4 + R̃(ū1, ū2, ū3) . (7.26)
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Using that R4 = 0, and comparing (7.26) to (7.25) we get at once that

R̃(ū1, ū2, ū3) = R6(ū1, ū2, ū3) . (7.27)

Assuming further dual conformal invariance, the conclusion of [21] is that determining the

remainder function R6 in the triple collinear limit is equivalent to determining it in full

generality.

We can now derive the triple collinear limit of the two-loop n-point remainder function

for general n ≥ 6. Using (7.27) we have

Rn → Rn−2 + R6(ū1, ū2, ū3) , (7.28)

where (ū1, ū2, ū3) are still defined by (7.24) (in the case where the collinear momenta are

p4, p5 and p6).

What about Wilson loops? Similarly to our discussion of simple collinear limits, we ex-

pect that, for Wilson loops, the triple collinear limit of the Wilson loop remainder function

is given by

RWL
n (u14, u25, u36, u47, u15, u26, u37) → RWL

n−2 + RWL
6 (ū1, ū2, ū3) . (7.29)

Now consider a triple collinear limit of a heptagon Wilson loop, where p5, p6 and p7 are

collinear,

p5 = x5 − x6 = z1P , p6 = x6 − x7 = z2P , p7 = x7 − x1 = z3P , z1 + z2 + z3 = 1 .

(7.30)

In this limit,

RWL
7 → RWL

6 (ū1, ū2, ū3) , (7.31)

since there is no five-point remainder function.

For our present case of collinear p5, p6 and p7 the variables ūi read

ū1 =
1

1 − z3

x2
57

x2
15

, ū2 =
1

1 − z1

x2
16

x2
15

, ū3 =
z1z3

(1 − z1)(1 − z3)
. (7.32)

The triple collinear limit (7.30) of the seven-point kinematics gives

x2
15 ∼ x2

16 ∼ x2
57 → 0 ,

x2
27 = z3x

2
25 , x2

26 = (1 − z1)x
2
25 , x2

46 = z1x
2
41 , x2

47 = (1 − z3)x
2
41 ,

x2
36 = (1 − z1)x

2
35 + z1x

2
13 , x2

37 = (1 − z3)x
2
13 + z3x

2
35 , (7.33)

with all other x2
ij segments unmodified. The cross-ratios uij take the form:

u14 = 0 , u25 =
(1 − z1)x

2
35

z1x
2
13 + (1 − z1)x

2
35

u36 =
z1

1 − z3

z3x
2
35 + (1 − z3)x

2
13

z1x2
13 + (1 − z1)x2

35

, u47 =
1

1 − z3

x2
57

x2
15

, u15 =
1

1 − z1

x2
16

x2
15

,

u26 =
z3

1 − z1

z1x
2
13 + (1 − z1)x

2
35

z3x2
35 + (1 − z3)x2

13

, u37 =
(1 − z3)x

2
13

z3x2
35 + (1 − z3)x2

13

. (7.34)
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These relations imply two things. First we note that there are three constraints on the

seven variables,

u14 = 0 , u25 + u36u37 = 1 , u37 + u25u26 = 1 , (7.35)

leaving four variables unconstrained, out of which the three conformal ratios coincide with

the ūi variables of (7.32),

u47 = ū1 , u15 = ū2 , u26u36 = ū3 . (7.36)

Taking this into account, and solving the two constraints in (7.35) for u14 and u35 we

conclude that the triple collinear limit relates the seven-point remainder function to the

six-point one as follows:

RWL
7

(
0,

1 − u36

1 − u26u36
, u36, u47, u15, u26,

1 − u26

1 − u36u26

)
= RWL

6 (u47, u15, u26u36) . (7.37)

Notice that since RWL
7 is invariant under cyclic interchange of its variables, this is exactly

the same equation as we had before in the simple collinear limit (7.19) (alas expressed in

terms of u36, u47, u15 and u26).

We conclude that the simple and the triple collinear limits described by (7.19) and (7.37)

give identical information about RWL
7 . As before, the left hand side of (7.37) cannot de-

pend on one particular combination of cross-ratios, namely u36/u26 := κ. Thus, we can

rewrite (7.37) as

RWL
7

(
0,

1 −√
ū3κ

1 − ū3
,
√

ū3κ, ū1, ū2,
√

ū3/κ,
1 −

√
ū3/κ

1 − ū3

)
= RWL

6 (ū1, ū2, ū3) , (7.38)

and note that the left hand side must be independent of the variable κ.

Finally, we have investigated the quadruple collinear limit, which is the highest non-

trivial multi-collinear limit one can take on the seven-point kinematics. We have found in

this limit that all seven cross-ratios are (a) mutually independent, and (b) are expressed

entirely in terms of the multi-collinear kinematics (i.e. they are functions of z1, . . . , z4 and

ratios of kinematic invariants involving only the collinear momenta). In this way, the

quadruple collinear limit does not add any non-trivial functional constraints on the R7,

however, it elucidates its physical (scattering amplitudes-based) meaning,

RWL
7 (u14, u25, u36, u47, u15, u26, u37) = ∆split4 := r

(2)
S4 − r

(2) BDS
S4 , (7.39)

where ∆split4 is the normalised two-loop level part of the quadruple splitting function r
(2)
S4

which is not already accounted by the BDS contribution r
(2)BDS
S4 . Hence, similarly to the

six-point case discussed in previously [21], we see that the remainder function R7 is entirely

determined by the quadruple splitting function.
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(m1, . . . ,m8) RWL
8

(−1,−1,−1,−1,−1,−1,−1,−1) -4.603

(−2,−2,−2,−2,−2,−2,−2,−2) -4.602

(−1,−2,−4,−8,−1,−2,−4,−8) -4.605

(−5,−3,−5,−3,−1,−3,−5,−7) -4.605

Table 4. The remainder function RWL
8 for u1 = u2 = · · · = u12 = 1 and different choices of the

other independent invariants (8.3). The errors in RWL
8 are approximately 0.02.

8 Eight-point Wilson loops and beyond

It is natural to seek beyond the encouraging results at seven points given above, and

see if these persist at eight points. The discussion earlier indicates that there are twelve

independent conformal cross-ratios in this case (we take the external momenta to be on

shell and do not impose the Gram determinant constraint), whereas there are twenty

independent momentum invariants. These independent invariants may be taken to be

x2
i i+2, x

2
i+4 i+6, x2

i i+3, x2
i+4 i+7, x2

i i+4 , i = 1, . . . , 4 . (8.1)

We will use the following twelve cross-ratios:

ui i+3 , i = 1, . . . , 8 , ui i+4 , i = 1, . . . , 4 , (8.2)

and label these u1, . . . , u12. Instead of the twenty momentum invariants given in (8.1), we

will use these twelve cross-ratios, plus the following eight momentum invariants

x2
i+5 i+8, x2

i i+4 , i = 1, . . . , 4 , (8.3)

which we will call m1, . . . ,m8. The remaining momentum invariants x2
i i+2, x

2
i+4 i+6 and

x2
i+1 i+4, for i = 1, . . . , 4, are then dependent variables.

The first question is to check that our results the eight-point Wilson loop remainder

function RWL
8 are consistent with the dual conformal invariance. More precisely, we check

whether RWL
8 is only a function of the twelve conformal cross-ratios (8.2), and not of the

additional eight invariants (8.3). To do this, one may fix a choice of the cross-ratios, then

calculate the eight-point remainder function for various choices of kinematics, correspond-

ing to different choices of the variables (8.3). For example, in table 4 we have listed some

numerical results for the case of all the cross-ratios of (8.2) equal to one. We find similar

results for more generic values of the cross-ratios — an example is given in table 5.

These results support the conjecture that the eight-point remainder function RWL
8 is a

function of the twelve cross-ratios (8.2) alone, and not of any other independent additional

momentum invariants.

Given this, a second question concerns symmetries of the function RWL
8 (u1, . . . , u12).

The Wilson loop is invariant under cyclic permutations of the external momenta as well

as under parity. For the case of eight points, this implies that the remainder function

RWL
8 (u1, . . . , u12) should be invariant under cyclic permutations of the first eight and last
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(m1, . . . ,m8) RWL
8

(−2,−3,−4,−1,−5,−6,−7,−8) 5.993

(−1/3,−1/4,−1/9,−1/2,−1/8,−1/7,−1/6,−1) 5.984

Table 5. The remainder function RWL
8 for the choice of cross-ratios (u1, . . . , u12) =

(2, 3, 4, 1/2, 1/3, 1/4, 1/5, 1, 1/5, 1/6, 1/7, 1/8) and two choices of the other independent invari-

ants (8.3). The errors in RWL
8 are approximately 0.04.

four cross-ratios simultaneously, as well as being invariant under the simultaneous reversal

of both the first eight and last four cross-ratios. We find numerical agreement with this —

for example,

RWL
8 (2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) = −3.712,

RWL
8 (1, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1) = −3.712, (8.4)

with errors ∼ 0.02. We have also seen numerically in a number of cases that there is no

invariance under more general permutations of the cross-ratios.

Let us now consider collinear limits of the eight-point remainder function. As an

example we take p7 and p8 to be collinear. We set

p7 = x7 − x8 = zP , p8 = x8 − x1 = (1 − z)P , (8.5)

where as usual P 2 → 0 in the collinear limit. In this collinear limit, the cusp at x8 is

“flattened”. In this limit we find that the eight-point cross-ratios (u14, u25, u36, u15, u26)

reduce directly to the cross-ratios in the seven-point case with the same names, u16 → 0

and the seven-point cross-ratios (u47, u37) are given in terms of the eight-point ones as

(u47u48, u37u38) respectively. Finally, we have the following relations amongst the eight-

point cross-ratios:

u27u37u38 = −1 + u27 + u38,

(−1 + u27 + u38)u47 = u38(1 − u58),

u48u58 = 1 − u27u37,

u37(−u38 − u47 + u38u47 + u38u58) = −1 + u58, (8.6)

which are solved by

u27 =
−1 + u38

−1 + u37u38
,

u58 =
−1 + u37u38 + u37u47 − u37u38u47

−1 + u37u38
,

u48 =
−1 + u37

−1 + u37u38 + u37u47 − u37u38u47
. (8.7)

The three variables (u37, u38, u47) in the above are then freely specifiable.
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Analysis of the remainder function given earlier implies that in the collinear limit

RWL
8 → RWL

7 . (8.8)

Hence in the collinear limit (8.5) one should have

RWL
8 (u14, u25, u36, u47, u58, u16, u27, u38, u15, u26, u37, u48) →

RWL
8 (u14, u25, u36, u47, u

∗
58, 0, u

∗
27, u38, u15, u26, u37, u

∗
48)

= RWL
7 (u14, u25, u36, u47u

∗
48, u15, u26, u37u38) , (8.9)

where the stars in the above indicate that the solutions (8.7) are to be inserted.

One can test this directly. For example, for the choices of values for the independently

specifiable eight-point cross-ratio variables

(u14, u25, u36, u47, u83, u15, u26, u37) = (1, 1, 1, 1, 1/2, 1, 1, 1/2), (8.10)

and taking u61 = 0.001 one finds

RWL
8 (u14, u25, u36, u47, u

∗
58, 0.001, u

∗
72 , u83, u15, u26, u37, u

∗
48) = −4.2756,

RWL
7 (u14, u25, u36, u47u48, u15, u26, u37u38) = −4.2906 , (8.11)

with errors of 0.147 and 0.005 respectively.

The success of the above numerical tests of the conformal symmetry, functional sym-

metries and collinear limits of the eight-point remainder function supports the conjecture

that the Wilson loop is correctly reproducing the physical amplitude at this level.

There are no further conceptual or computational obstacles to generalising the above

work beyond eight-point Wilson loops, apart from the question of the computer time re-

quired to numerically calculate the integrals — we stress that no new integrals arise in the

Wilson loop approach to n-point two-loop diagrams for any n, apart from those which we

have already discussed, and we are able to calculate all the diagrams introduced for generic

values of the momentum variables Qi (numerically, and in a number of cases, analytically).

This means that we have full numerical control over two-loop n-gon Wilson loops and,

if the correspondence with amplitudes continues to hold, over n-point MHV amplitudes

at arbitrary n in the planar N = 4 theory. This should be contrasted with the situation

where one calculates amplitudes directly.
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A A note on conventions

Wilson loops are computed in dimensional reduction in D = 4 − 2ǫUV dimensions with

ǫUV > 0 to regularise the UV divergences. To facilitate the comparison with scattering

amplitudes (which require infrared regularisation) we introduce

ǫ = −ǫUV . (A.1)

The perturbative expansion of the Wilson loop is characterised by (3.2), (3.3):

〈W [Cn]〉 = 1 +

∞∑

l=1

alW (l)
n = exp

∞∑

l=1

alw(l)
n , (A.2)

w(2)
n = W (2)

n − 1

2
(W (1)

n )2 , (A.3)

and (3.21) defines the Laurent expansion in ǫ for the two-loop contribution,

w(2)
n =

n∑

i=1

(
−x2

ii+2

µ2

)−2ǫ
(

w
(2)
−2

ǫ2
+

w
(2)
−1

ǫ

)
+ F (2)

n + O(ǫ) , (A.4)

where F
(2)
n is the finite part of the Wilson loop.

In [23] the exponent of the Wilson loop in (A.2) was defined as aw(1) + 2a2w(2) + · · · ,
and thus a corresponding factor of 1/2 would need to be introduced in front of the right

hand side in (A.3) and in (A.4) if we were to switch to their conventions. Therefore our

singular terms w−2, w−1 and the finite part F
(2)
n in (A.4) are related to the A−2, A−1 and

A0 contributions of [25] as follows:

w−2 =
∑

α

A
(α)
−2 , w−1 = −

∑

α

A
(α)
−1 , F (2)

n = 2
∑

α

A
(α)
0 . (A.5)

The minus sign in the second equation is due to (A.1).

B Most general hard diagram

Below is the result for the diagram where a three-point vertex is attached to three lightlike

momenta p1, p2, p3 of the Wilson loop, which we call the “hard diagram” as it is the

most difficult to evaluate analytically in general. These momenta are separated by the

three, not necessarily lightlike momenta, Q3, Q1, Q2, where Q3 is between p1 and p2 and

so on (see figure 2). Momentum conservation is then
∑3

i=1(pi + Qi) = 0. We also set

D = 4− 2ǫUV = 4+2ǫ where ǫUV = −ǫ > 0. The special four-point case is considered later.
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We write this diagram in the most general configuration as12

fH(p1, p2, p3;Q1, Q2, Q3) (B.1)

:=
Γ(2 − 2ǫUV)

Γ(1 − ǫUV)2

∫ 1

0

(
3∏

i=1

dτi

)∫ 1

0

(
3∏

i=1

dαi

)
δ

(
1 −

3∑

i=1

αi

)
(α1α2α3)

−ǫUV
N

D2−2ǫUV

,

where

D := −α1α2(z1 − z2)
2 − α2α3(z2 − z3)

2 − α1α3(z1 − z3)
2 , (B.2)

and

(z1 − z2)
2 = Q2

3 + 2(p1p2)(1 − τ1)τ2 + 2(Q3p1)(1 − τ1) + 2(Q3p2)τ2 , (B.3)

(z2 − z3)
2 = Q2

1 + 2(p2p3)(1 − τ2)τ3 + 2(Q1p2)(1 − τ2) + 2(Q1p3)τ3 ,

(z3 − z1)
2 = Q2

2 + 2(p3p1)(1 − τ3)τ1 + 2(Q2p3)(1 − τ3) + 2(Q2p1)τ1 .

The original expressions for the zi − zi+1 are

zi − zi+1 = Qi+2 + pi(1 − τi) + pi+1τi+1 , i = 1, 2, 3 . (B.4)

The expression for the numerator N has two kinds of terms. The first three lines involve

τ and α parameters, whereas the remaining three lines involve only the τ parameters. It

is given by

N = 2(p1p2)(p1p3)
[
α1α2(1 − τ1) + α3α1τ1

]

+2(p1p2)(p2p3)
[
α2α3(1 − τ2) + α1α2τ2

]

+2(p1p3)(p2p3)
[
α3α1(1 − τ3) + α2α3τ3

]

+2α1α2

[
2(p1p2)(p3Q3) − (p2p3)(p1Q3) − (p3p1)(p2Q3)

]

+2α2α3

[
2(p2p3)(p1Q1) − (p3p1)(p2Q1) − (p1p2)(p3Q1)

]

+2α3α1

[
2(p3p1)(p2Q2) − (p1p2)(p3Q2) − (p2p3)(p1Q2)

]
. (B.5)

B.1 Four-point case

The four-point case can be obtained by setting

Q3 = Q1 = 0 , Q2 = p4 = −(p1 + p2 + p3) , (B.6)

where now Q2
2 = p2

4 = 0. The expression for N in (B.5) then simplifies to

N = 2(p1p2)(p1p3) (1 − τ1)α1(α2 − α3)

+2(p1p2)(p2p3)
[
α2α3(1 − τ2) + α1(2α3 + α2τ2)

]

+2(p1p3)(p2p3) τ3α3(α2 − α1) . (B.7)

12We remind the reader that we will always suppress the common prefactor defined in (4.1) from the

expression of all diagrams.
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In this special case we have

(z1 − z2)
2 = 2(p1p2)(1 − τ1)τ2 , (B.8)

(z2 − z3)
2 = 2(p2p3)(1 − τ2)τ3 ,

(z3 − z1)
2 = 2(p3p1)(1 − τ3)τ1 + 2(p3p4)(1 − τ3) + 2(p1p4)τ1 ,

where we can set

s := 2(p1p2) = 2(p3p4) ,

t := 2(p2p3) = 2(p1p4) ,

u := 2(p1p3) = 2(p2p4) , (B.9)

and s + t + u = 0.

The denominator in the four-point case then simplifies to

D := s α1α2τ2(1 − τ1) + t α2α3τ3(1 − τ2) + α3α1

[
s(1 − τ1)(1 − τ3) + tτ1τ3

]
. (B.10)

Notice that in the six-point case there is a new diagram where all the Qi’s are made

of a single lightlike momentum; in this diagram Q2
1 = Q2

2 = Q2
3 = 0. One should find that

the result for the corresponding integral I is finite in four dimensions.

C Curtain diagram

We call “curtain” diagrams those diagrams where two propagators connect three different

edges, as depicted in figure 3. We use the same notation as in the three-point vertex case

above, with propagators stretching from p1 to p2 (with end-points z1(σ1) and z2(τ2)) and

from p1 to p3 (with end-points z1(τ1) and z3(τ3)).

Just from looking at the diagram we should have the following symmetry: p2 ↔ p3

Q2 ↔ Q3. We have

z1(τ1) = p1τ1 (C.1)

z1(σ1) = p1σ1 (C.2)

z2(τ2) = p2τ2 + p1 + Q3 (C.3)

z3(τ3) = −p3τ3 − Q2 . (C.4)

The exponentiation theorem says we should only consider the diagram where the internal

gluon propagators cross - this gives the constraint τ1 > σ1.

The diagram represents the following contribution to the Wilson loop:

− 1

2

∫ 1

0

(
3∏

i=1

dτi

)∫ τ1

0
dσ1

(p1p2)(
− [z1(σ1) − z2(τ2)]2

)1−ǫUV

(p1p3)(
− [z1(τ1) − z3(τ3)]2

)1−ǫUV
. (C.5)

Putting in the values for the end-points we get the following integral representation:

−1

2

∫ 1

0

(
3∏

i=1

dτi

)∫ τ1

0
dσ1

(p1p2)[
− 2(p1Q3)(1 − σ1) − 2(p1p2)(1 − σ1)τ2 − 2(p2Q3)τ2 − Q2

3

]1−ǫUV

× (p1p3)[
− 2(p1Q2)τ1 − 2(p1p3)τ1τ3 − 2(p3Q2)τ3 − Q2

2

]1−ǫUV
. (C.6)
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A more symmetrical way to write this is to send σ1 → 1 − σ1 in which case the constraint

τ1 > σ1 becomes τ1 + σ1 > 1 and the integrand would be manifestly symmetric under

p2 ↔ p3, Q2 ↔ Q3, τ1 ↔ σ1 and τ2 ↔ τ3. We have performed this change of variables to

obtain (4.7).

D Cross diagram (involving two sides)

This diagram consists of two gluon propagators, stretching from sides p1 to p2 with sides

Q1 and Q2 between, as represented in figure 4.

The end-points of the first propagator are z1(τ1) and z2(τ2), and of the second are

z1(σ1) and z2(σ2), with

z1(σ1) = p1σ1 z2(σ2) = −p2σ2 − Q2

z1(τ1) = p1τ1 z2(τ2) = −p2τ2 − Q2 . (D.1)

In order to ensure the crossing of the propagators we require τ1 < σ1 and τ2 > σ2. The

diagram then represents the integral

−1

2

∫ 1

0
dσ1dτ2

∫ σ1

0
dτ1

∫ τ2

0
dσ2

(p1p2)(
− [z1(σ1) − z2(σ2)]2

)1−ǫUV

(p1p2)(
− [z1(τ1) − z2(τ2)]2

)1−ǫUV
.

(D.2)

Putting in the values of the end-points gives the integral

−1

2

∫ 1

0
dσ1dτ2

∫ σ1

0
dτ1

∫ τ2

0
dσ2

(p1p2)(
− 2(p1p2)σ1σ2 − 2p1Q2σ1 − 2p2Q2σ2 − Q2

2

)1−ǫUV

(p1p2)(
− 2(p1p2)τ1τ2 − 2p1Q2τ1 − 2p2Q2τ2 − Q2

2

)1−ǫUV
. (D.3)

E Y diagram

This diagram consists of three gluon propagators, meeting at a vertex, with two propa-

gators ending on side p1 and the third ending on p2 with sides Q1 and Q2 between. The

contribution of this diagram is

p1 ·p2

8

∫ 1

0
dτ1dτ2

[
2G
(
z1(τ1), z1(τ1), z2(τ2)

)
−G

(
z1(0), z1(τ1), z2(τ2)

)
−G

(
z1(1), z1(τ1), z2(τ2)

)]

(E.1)

where z1(τ1) = p1τ1 is a point ending on the edge p1 and z2(τ2) = −Q1 − p2τ2 a point on

edge p2 and

G(z1, z2, z3) =
Γ(1 − 2ǫUV)

Γ2(1 − ǫUV)

∫ 1

0
dα1dα2dα3

(α1α2α3)
−ǫUVδ(1 − α1 − α2 − α3)

(−α1α2z12 − α1α3z13 − α2α3z23)1−2ǫUV

(E.2)

=
1

ǫUV

Γ(1 − 2ǫUV)

Γ2(1 − ǫUV)

∫ 1

0
dσ

σ−ǫUV(1 − σ)−ǫUV

(−σz2
13 − (1 − σ)z2

23)
1−2ǫUV

(E.3)
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where the final equality is valid whenever z2
12 = 0 (as is the case here) and can be shown

by changing variables to ρ, σ with α1 = (1 − ρ)σ, α2 = (1 − ρ)(1 − σ), α3 = ρ.

Now it turns out that the first term in (E.1) is precisely canceled by half of the self-

energy correction to the propagator between sides p1 and p2 with the other half canceling

the upside-down Y diagram. We also notice that it is the combination of these two contri-

butions which has the expected maximal transcendentality. The explicit expression for the

self-energy correction to the gluon propagator in N = 4 SYM can be found, for example,

in [72].

Thus, neglecting the first term, the result of the Y diagram integral is

p1 ·p2

8

1

ǫUV

Γ(1−2ǫUV)

Γ2(1−ǫUV)

∫ 1

0
dσ

∫ 1

0
dτ1dτ2

(
− σ−ǫUV(1 − σ)−ǫUV

(−σ(Q1+p2τ2)2−(1−σ)(Q1+p1τ1+p2τ2)2)1−2ǫUV

− σ−ǫUV(1 − σ)−ǫUV

(−σ(−p2(1 − τ2) − Q2)2 − (1 − σ)(Q1 + p1τ1 + p2τ2)2)1−2ǫUV

)

=
p1 ·p2

8

1

ǫUV

Γ(1−2ǫUV)

Γ2(1−ǫUV)

∫ 1

0
dσ

∫ 1

0
dτ1dτ2

(
− σ−ǫUV(1 − σ)−ǫUV

(−(1−σ)(Q1+p2τ2)2−σ(Q1+p1τ1+p2τ2)2)1−2ǫUV

− σ−ǫUV(1 − σ)−ǫUV

(−(1 − σ)(p2τ2 + Q2)2 − σ(Q2 + p1τ1 + p2τ2)2)1−2ǫUV

)

=
p1 ·p2

8

1

ǫUV

Γ(1−2ǫUV)

Γ2(1−ǫUV)

∫ 1

0
dσ

∫ 1

0
dτ1dτ2

(
− σ−ǫUV(1−σ)−ǫUV

(−Q2
1 − 2(Q1p2)τ2−στ1(2(Q1p1)+2(p1p2)τ2))1−2ǫUV

− σ−ǫUV(1 − σ)−ǫUV

(−(Q2
2 + 2(Q2p2)τ2 + στ1(2(Q2p1) + 2(p1p2)τ2))1−2ǫUV

)
, (E.4)

where to obtain the second equality we have used the change of variables σ → 1 − σ,

τi → 1 − τi. The final answer is manifestly symmetric under Q1 ↔ Q2.

All two-loop diagrams are given by the above integrals, for various values of the mo-

menta pi, Qi.
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